Tulla – Newmarket-on-Fergus GWB: Summary of Initial Characterisation.

<table>
<thead>
<tr>
<th>Hydrometric Area</th>
<th>Local Authority</th>
<th>Associated surface water bodies</th>
<th>Associated terrestrial ecosystems</th>
<th>Area (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>27 - Fergus Catchment</td>
<td>Clare Co. Co.</td>
<td>Rivers: Derryuane, Owegarvey/Ratty, Killuran, Glenomra, Rine, O’Callaghan mills, Liskenny, Owengarvey/Ratty, Broadford, Gourna, Cratloe, Croompana (East), Hell. Streams: Cloonadanagh Lough, Cloverhill. Loughs: Loghaun, Blarnagh, Cloonadanagh, Cloondoorney, Derrinterriff, Cragganaweer, Lisbarreen, Bridget, Cragmurnia, Ballynahinch, Gash, Clenagh, Coolbhaun, Ballymacdonnell, Formerla, Kilgory, Naclonomies, O’Harr’s, Clooney, Lecarrow, Liskenny, Doors, Gar, an Dunn, Gar, Teerene, Enagh, Corbit’s, Kilnacrandy, Ardaun, Derry, Terehean, Nanillaun, Finn, Rosroe, Ballymulcashel, Cloonmunnia, Castle, Skheen, Town, Knocknalappa, Coolmean, Ballycurneen, Ballintea, Gorteen, Poulalougha, Avullig.</td>
<td>Doon Lough (000337), Rosroe Lough (002054), Fin Lough (Clare) (001010), Ballycan Lough (000015), Lough Gash Turlough (000051), Fergus Estuary and Inner Shannon, North Shore (002048).</td>
<td>369</td>
</tr>
</tbody>
</table>

Topography

This groundwater body is generally elongated in N-S direction and is irregular in shape, similar to a ‘>’, as it curves around the karstic Kilkeshen GWB. Elevation within the GWB ranges from 10 m AOD in the very south of the GWB along the Shannon/Fergus Estuary, and less than 30 m AOD along much of the western boundary (i.e. at the contact with the karstified limestones of the Kilkishen GWB and low flow Crusheen GWB) to 532 m AOD at the Moylusa peak of the Slieve Bernagh, in the SE of the GWB. Elevation reaches 300 m AOD in the north, on one of the peaks of the Slieve Aughty. The topography ranges from mountainous in areas underlain by the resistant sandstones and mudstones of the Devonian Old Red Sandstones and Silurian rocks, where elevations are typically >100 m AOD, to flat-lying in areas underlain by impure limestones, where elevations are typically 20-60 m AOD, but up to 80 m AOD on knolls in the pure unbedded limestones and towards the surface water catchment divide in the east. Ground elevation decreases towards the west, centre and south of the GWB, towards the Fergus River valley and towards the Shannon/Fergus estuary. River flows radiate outwards from the two upland areas in the north and south of the GWB, flowing generally westwards.

Aquifer categories

In the uplands in the NW of the GWB, bedrock units are **Pl**: Poor aquifers which are generally unproductive except for local zones, as are the uplands in the east of the GWB that are underlain by Silurian, Ordovician and Dinantian (early) etc. rocks. In the remainder of the GWB, aquifers are predominantly **Lm**: Locally important aquifers which are moderately productive only in local zones. The small area of Pure Bedded Limestones in the southern part of the GWB are classified as an **L**: Locally important aquifer which is generally moderately productive. The narrow strips of Dinantian (early) Sandstones, Limestones and Shales are classified as **Pl**. Note that the Devonian Old Red Sandstones are classified as **Pl** in the northern zone (Slieve Aughty area) and **Ll** in the southern zone (Slieve Bernagh area) of this GWB.

Main aquifier lithologies

Devonian Old Red Sandstones and Silurian Metasediments and Volcanics occupy the northern tip and most of the SE parts of the GWB; there are small areas of Ordovician Medasediments and Volcanics in these areas also. The lowlands along the west and in the centre and SW of the GWB are underlain by Dinantian Pure Unbedded Limestones, Dinantian Lower Impure Limestones and Dinantian (early) Sandstones, Limestones and Shales. There is a small area of Dinantian Upper Impure Limestones and Pure Bedded Limestones east of Newmarket-on-Fergus.

Key structures

The major structures affecting the distribution of rock types and hence aquifer types are large anticlinal and synclinal folds, and major faults. The older and more resistant rocks that form the Aughty and Bernagh Mountains occur within the cores of the ENE-WSW orientated anticlines that are found in the south and north of the GWB. The younger impure and pure limestones are found preserved in the cores of the syncline between the two upland areas, and on the limbs of the anticlines around the margins of the western basins. Bedding dips are low, generally 5-15°. There are several major fault sets crossing the GWB: those with the same orientation as the fold axes, N-S faults, and also NW-SE and NE-SW faults. Most faults are mapped in the southern part of the GWB, but this may be related to lack of exposure or detailed mapping.

Key properties

In the Silurian rock unit in the Slieve Felim mountains to the south of this GWB, a site investigation undertaken for a proposed landfill found that permeabilities in the top 30 m of rock ranged from 0.00036 to 0.76 m/d. A zone of higher permeability, 150-200 m wide, 12-14 m deep and 2.2 km long was delineated on the site. The transmissivity estimated for this zone was 27-82 m²/d (Deakin, Daly and Coxon, 1998). At Templederry, in the Nenagh GWB, early time pumping test data indicate a transmissivity of around 5 m²/d. The higher transmissivities quoted are probably only attained in limited circumstances. For the ORS in this GWB, there are no data. In the northern area of the GWB, transmissivities will be very similar to the Silurian aquifers. In the southern zone of the GWB, transmissivities will be low, but mainly better than in the Silurian rocks, especially towards the junction with the Dinantian (early) Sandstones, Shales and Limestones. Within the Dinantian Lower and Upper Impure Limestones, transmissivities are likely to be in the range 2-20 m²/d, with most values at the lower end of the range. Dinantian (early) Sandstones, Shales and Limestones aquifer properties are less good than this. A pumping test in the Dinantian Pure Unbedded Limestones (Waulsortian limestones) at Shinrone in west Co. Offaly indicated a transmissivity of approximately 27 m³/d. In this GWB, at Tulla, transmissivity in the same rock unit is estimated as 13 m³/d. These values are probably in the middle of the range. Groundwater gradients in the upland areas may be steep (up to 0.06). In lower-lying areas, groundwater gradients on the order of 0.01 to 0.04 may be the norm. Storativities in all rocks are low. Porosity values of approximately 0.015 are likely to be representative of the ORS and Lower Impure Limestones in Co. Clare.

(data sources: Rock Unit Group Aquifer Chapters, GWPS Reports, Source reports, see references)
<table>
<thead>
<tr>
<th>Thickness</th>
<th>The Silurian, ORS, Ordovician and Dinantian Lower Impure Limestone aquifers are more than several hundreds of metres thick at their maximum. However, most groundwater flow occurs within the top 15-20 m of the aquifer, in the layer that comprises a weathered zone of a few metres and a connected fractured zone below this. Permeabilities can be high in the upper few metres, but generally decrease rapidly with depth. Deeper inflows may occur where faults or significant fractures are intercepted by boreholes, however. The maximum thickness of Dinantian (early) Sandstones, Shales and Limestones is less than 100 m. Again, groundwater flow is confined to the top 15 m in the main. In the Pure Unbedded Limestones in the west of the GWB, there may be an epikarstic layer of around 1-2 m. Below this, the thickness of the bedding (around 5-10 m) and/or jointing and faulting controls the inflow intervals. Most flow occurs within the top 10-20 m. Deeper inflows may occur where faults or significant fractures are intercepted by boreholes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lithologies</td>
<td>[Information to be added at a later date]</td>
</tr>
<tr>
<td>Thickness</td>
<td>The groundwater body is large and with varied topography, hence the subsoil thickness varies. Over the Pure Unbedded Limestones that occupy the low-lands in the west and centre of the GWB, subsoil is thin, with thicknesses typically in the range 1-3 m and plenty of outcropping rock. Occasional deeper subsoils (up to 10 m) are encountered. Subsoil thicknesses are generally similar over the Lower Impure Limestones, which are found in the area between the lowlands and the foothills of Slieve Aughty and Bernagh. However, over these rocks, there are few extensive areas of outcropping rocks, and subsoil thicknesses can reach 15-20 m in places. Over the Devonian Old Red Sandstone and Silurian aquifers, subsoil varies from very thin to absent on ridges and local topographic highs, to between 6-20 m in valleys or local depressions. There is a gravel aquifer delineated in the Glenorma River valley, which is a river that drains north-westwards off Slieve Bernagh. Subsoil thicknesses in this area are around 5-11 m.</td>
</tr>
<tr>
<td>% area aquifer near surface</td>
<td>[Information to be added at a later date]</td>
</tr>
<tr>
<td>Vulnerability</td>
<td>Across the GWB, Vulnerability ranges from Low to Extreme. Vulnerability is Extreme in the highest areas of Slieve Bernagh and Aughty and on ridges. Vulnerability is also extreme in large patches of the lowlands, where rock is outcropping or subsoil thin. Vulnerability is Low on the slope of Slieve Aughty and in a small area next to the Fergus Estuary, and in small patches on the slopes of Slieve Bernagh. Vulnerability is predominantly High elsewhere, excepting the area around Callaghansmills, where it is Moderate.</td>
</tr>
<tr>
<td>Recharge</td>
<td>Diffuse recharge will occur via rainfall percolating through the subsoil. The proportion of the effective rainfall that recharges the aquifer is largely determined by the thickness and permeability of the soil and subsoil, and by the slope. Due to the generally low permeability of the aquifers within this GWB, a high proportion of the recharge will then discharge rapidly to surface watercourses via the upper layers of the aquifer, effectively reducing further the available groundwater resource in the aquifer. In lowland areas where water tables are high, recharge may be rejected.</td>
</tr>
<tr>
<td>Est. recharge rates</td>
<td>[Information to be added at a later date]</td>
</tr>
<tr>
<td>Important springs and high yielding wells (m³/d)</td>
<td>There are no Excellent (> 400 m³/d) yielding boreholes known in this GWB. There are 13 that are within the GSI ‘Good’ yield category (100 m³/d < yield < 400 m³/d), however, although yields can decline during the summer months. Springs used as public supplies or group schemes (Broadford WS and Woodcock Hill GWS) have Low yields and tend to dry up in summer.</td>
</tr>
<tr>
<td>Main discharge mechanisms</td>
<td>Groundwater discharges to the gaining streams and rivers crossing the GWB. The aquifers within this GWB have low storage capacity and cannot sustain high summer baseflows to the rivers. Springs within the GWB tend to have low yields, and may dry up in summer.</td>
</tr>
<tr>
<td>Hydrochemical Signature</td>
<td>There are limited hydrochemical data available for this GWB. From available data and by analogy with the similar Nenagh and Slieve Felim GWBs, it is likely that groundwaters from all aquifers within this groundwater body have a calcium-bicarbonate signature. Hardness, alkalinity and electrical conductivities will vary between the aquifers, however. Groundwaters from the Silurian strata are likely to range from Slightly Hard to Hard (90-360 mg/l as CaCO₃), with alkalinitities ranging from 60 to 270 mg/l (as CaCO₃) and electrical conductivities from 260–600 µS/cm. pHs will be neutral. At springs, or other systems where throughput is rapid, groundwaters have limited dissolved solids and are at the lower end of the ranges quoted above. In the Old Red Sandstone aquifers, groundwaters are Moderately Hard (145-235 mg/l as CaCO₃) with moderate alkalinitities (140-225 mg/l as CaCO₃) and electrical conductivities (310-440 µS/cm), and neutral to slightly acidic pHs. The groundwater is characterised by relatively low calcium and magnesium concentrations, but elevated iron and magnesium. It has been demonstrated that at low pumping rates water does not reside long enough in the well for oxidation to occur, thereby resulting in elevated Fe and Mn in small domestic supplies (Applin et al., 1989). In the Dinantian (early) Sandstones, Limestones and Shales, the Impure Limestones and the Pure Limestones, groundwaters will be hard to very hard (typically ranging between 380–450 mg/l), with high electrical conductivities (650–800 µS/cm) often observed. Alkalinity is also high, but less than hardness (250-370 mg/l as CaCO₃). Within the Impure and mixed Limestones, iron and manganese concentrations frequently fluctuate between zero and more than the EU Drinking Water Directive maximum admissible concentrations (MACs). Hydrogen sulphide can often reach unacceptable levels. These components come from the muddy parts of these rock units and reflect both the characteristics of the rock-forming materials and the relatively slow speed of groundwater movement through the fractures in the rock allowing low dissolved oxygen conditions to develop.</td>
</tr>
<tr>
<td>Discharge</td>
<td>There are limited hydrochemical data available for this GWB. From available data and by analogy with the similar Nenagh and Slieve Felim GWBs, it is likely that groundwaters from all aquifers within this groundwater body have a calcium-bicarbonate signature. Hardness, alkalinity and electrical conductivities will vary between the aquifers, however. Groundwaters from the Silurian strata are likely to range from Slightly Hard to Hard (90-360 mg/l as CaCO₃), with alkalinitities ranging from 60 to 270 mg/l (as CaCO₃) and electrical conductivities from 260–600 µS/cm. pHs will be neutral. At springs, or other systems where throughput is rapid, groundwaters have limited dissolved solids and are at the lower end of the ranges quoted above. In the Old Red Sandstone aquifers, groundwaters are Moderately Hard (145-235 mg/l as CaCO₃) with moderate alkalinitities (140-225 mg/l as CaCO₃) and electrical conductivities (310-440 µS/cm), and neutral to slightly acidic pHs. The groundwater is characterised by relatively low calcium and magnesium concentrations, but elevated iron and magnesium. It has been demonstrated that at low pumping rates water does not reside long enough in the well for oxidation to occur, thereby resulting in elevated Fe and Mn in small domestic supplies (Applin et al., 1989). In the Dinantian (early) Sandstones, Limestones and Shales, the Impure Limestones and the Pure Limestones, groundwaters will be hard to very hard (typically ranging between 380–450 mg/l), with high electrical conductivities (650–800 µS/cm) often observed. Alkalinity is also high, but less than hardness (250-370 mg/l as CaCO₃). Within the Impure and mixed Limestones, iron and manganese concentrations frequently fluctuate between zero and more than the EU Drinking Water Directive maximum admissible concentrations (MACs). Hydrogen sulphide can often reach unacceptable levels. These components come from the muddy parts of these rock units and reflect both the characteristics of the rock-forming materials and the relatively slow speed of groundwater movement through the fractures in the rock allowing low dissolved oxygen conditions to develop.</td>
</tr>
</tbody>
</table>
Groundwater Flow Paths

These rocks are devoid of intergranular permeability; groundwater flow occurs in fractures and faults. In the main, the rocks are dependent on fracturing and fissuring to enhance their permeability. Permeabilities in the upper few metres are often high although they decrease rapidly with depth. Most of the flow originates in the shallow zone near the top of the aquifer, although faulting in certain areas can act as high transmissivity zones that concentrate groundwater flow. The pure limestones may have had their transmissivity enhanced further by dissolution of calcium carbonate along fracture and bedding planes. Zones of high permeability can be encountered near fault zones and in areas of intensive fracturing. Evidence of the generally low permeabilities is provided by the drainage density and flashy runoff response to rainfall in areas underlain by Silurian, Devonian and Impure Limestone rocks. Areas underlain by Pure Unbedded Limestones are generally better-drained. This is due to the probable presence of an epikarstic layer.

Water levels in Silurian rocks are shallow, usually less than 8 m below surface. Water levels within the ORS unit are also generally less than 8 m below ground surface although two measurements of 24 mbgl and 36.6 mbgl are recorded in the GSI database, as well as an artesian borehole that is located near the boundary with the Lower Limestone Shales that may be acting as a confining layer. Seasonal water level variations recorded by the EPA in Devonian Sandstones in the south of the GWB are about 3-4 m in a borehole in which the SWL is approximately 30-34 mbgl. This relatively large variation indicates low aquifer storage. The deeper water levels indicate that there are zones within the aquifer that are hydraulically isolated. In the low-lying areas underlain by Pure Unbedded and Lower Impure limestones, groundwater levels are typically between 1 and 4 mbgl, although water levels can be up to 9 mbgl. Next to the rivers, water levels will be closer to ground level.

The aquifers in the GWB are mainly unconfined. On the southern slopes of Slieve Aughty, where vulnerability is Low, the ORS aquifer may be confined. Where the ORS aquifer passes underneath the Dinantian (early) Limestones, Sandstones and Shales, it may become confined. The ORS rock unit group is not considered to be an important aquifer in the areas where it passes underneath other rock units.

In the bedrock aquifers, groundwater flow paths are generally short, on the order of 30-300 m, with groundwater discharging to the streams and rivers that traverse the aquifer and to small springs. Local groundwater flows are determined by the local topography. There is no regional flow system in these aquifers. Surface water drainage is mainly westwards, except in the south of the GWB, where rivers drain south to the Fergus Estuary or to the Crompaun River.

There is one locally important gravel aquifer and gravelly deposits overlying this bedrock GWB – along the Glenomra River valley. Where gravelly deposits occur, they may contribute storage to the bedrock aquifer.

Groundwater & Surface water interactions

Due to the shallow groundwater flow in this aquifer the groundwater and surface waters are closely linked. The streams crossing the aquifer are gaining although, since aquifer storage is low, significant summer baseflows to the rivers cannot be sustained in most areas. Groundwater also discharges to springs. Several ecosystems in the area are thought to be at least partially dependent on groundwater. For example, Doon Lough (000337) is a large lake system with a variety of fringing habitats which include scrub, woodland, marsh, wet grassland and raised bog. Fin Lough (001010) Ballycar Lough (000015) are small to medium sized calcareous lakes fringed with good examples of fen, marsh, raised bog, heath and scrub habitats. Lough Gash Turlough (000051) does not always dry out, and is therefore of interest as an end-member example of turlough ecosystems. Water within the system comes from surface flow as well as groundwater. The Fergus Estuary is very large estuarine complex, consisting of swamps, salt marsh, wet marsh habitats and mudflats. The groundwater contribution from this GWB will be small compared with flux from the karstic Ennis and Kilkishen GWBs.
• The GWB is shaped like a ‘>’. It is bounded to the west by its contact with the karstic limestones of the Kilkishen GWB, and to the NW by a very subdued topographic ridge that separates this GWB from the adjacent Crusheen GWB. The western part of the southern boundary is the Fergus Estuary, and the eastern part of the southern boundary is formed by the contact with the karstic limestones of the Cratloe GWB. The SE and NE boundaries are surface water catchments that are implied groundwater divides.
• The terrain ranges between mountainous in areas underlain by Silurian and Devonian rocks to undulating or gently hilly in areas underlain by the impure and pure limestones.
• The groundwater body is comprised of generally low transmissivity and storativity rocks. The older rock units (i.e., Silurian and Devonian) are likely to have the lowest transmissivities, whereas the Pure Unbedded and Lower Impure Limestones (i.e. younger rock units) will have better flow properties. Transmissivities are generally lower in the northern part of the GWB than in the south. Aquifer specific yield is low in all aquifers. However, where gravels or gravelly tilts overlie the bedrock aquifer this can contribute to the storage.
• Flow occurs along fractures, joints and major faults. Faults within the rocks may act both as groundwater flow conduits and barriers. Within the pure limestones, transmissivity may have been enhanced further by dissolution of calcium carbonate along fracture and bedding planes. Flows in the aquifer are typically concentrated in a thin zone at the top of the rock. An epikarstic layer may exist at the top of the Pure Unbedded Limestones.
• Recharge occurs diffusely through subsoils and outcrops. The amount of recharge is a function of slope, subsoil thickness and permeability, and aquifer properties. Where the water table is close to the surface in upland or lowland areas, potential recharge may be rejected.
• Aquifers within the GWB are mainly unconfined. They are probably only confined in the area where vulnerability is Low, on the southern slope of Slieve Aughty, and in some areas where the ORS aquifers pass underneath the low transmissivity Dinantian (early) Sandstones, Limestones and Shales. Over the GWB, the water table is generally < 8 mbgl, but can be up to 35 mbgl in parts of the ORS aquifer. This indicates that there are regions that are not connected to the rest of the aquifer by a fracture network.
• Locally, groundwater flows to the surface water bodies and flow directions are determined by local topography. Flow path lengths in the upland and lowland areas are short (30-300 m). There is no regional flow system. The increased hydraulic gradient, due to the sloping topography in the upland areas, will allow groundwater to flow faster than if it were flowing through a similar rock type in low-lying land.
• Groundwater discharges to springs and to the numerous streams and rivers crossing the aquifer. There will be a small volume of cross-flow from this GWB to the karstic Kilkishen and Cratloe GWBs to the west and south, respectively. Surface water flowing off this GWB will recharge the adjacent karstic aquifers.
• Due to the shallow groundwater flow in this aquifer the groundwater and surface waters are closely linked. There are several ecosystems in the GWB dependent on groundwater. Groundwater and surface water interactions require special attention where the terrestrial ecosystems within this GWB are dependent on a sustainable balance between the two.

<table>
<thead>
<tr>
<th>Attachments</th>
<th>Groundwater hydrographs (Figure 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrumentation</td>
<td>Stream gauges: 27011.</td>
</tr>
<tr>
<td>EPA Water Level Monitoring boreholes: Kilkishen (CLA 068).</td>
<td></td>
</tr>
<tr>
<td>Aquifer chapters: Dinantian Pure Unbedded Limestones; Dinantian Lower Impure Limestones; Devonian Old Red Sandstones; Silurian Metasediments and Volcanics; Ordovician Metasediments; Dinantian (early) Sandstones, Limestones and Shales; Dinantian Pure Bedded Limestones; Dinantian Upper Impure Limestones.</td>
<td></td>
</tr>
<tr>
<td>Disclaimer</td>
<td>Note that all calculations and interpretations presented in this report represent estimations based on the information sources described above and established hydrogeological formulae</td>
</tr>
</tbody>
</table>
Figure 1: Groundwater hydrograph

Variation in water level at Kilkishen
EPA Monitoring Point CLA 068

NB: this monitoring point is in the Devonian Old Red Sandstones (L1 aquifer) near to the boundary with the overlying Dinantian (early) Sandstones, Limestones and Shales (P1 aquifer).
Rock units in GWB

<table>
<thead>
<tr>
<th>Rock unit name and code</th>
<th>Description</th>
<th>Rock unit group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ayle River Formation (AR)</td>
<td>Mudstone, siltstone, conglomerate</td>
<td>Devonian Old Red Sandstones</td>
</tr>
<tr>
<td>Old Red Sandstone (undifferentiated) (ORS)</td>
<td>Red conglomerate, sandstone, mudstone</td>
<td>Devonian Old Red Sandstones</td>
</tr>
<tr>
<td>Scaplnagown Formation (SG)</td>
<td>Conglomerate & sandstone, nodular</td>
<td>Devonian Old Red Sandstones</td>
</tr>
<tr>
<td>Lower Limestone Shale (LLS)</td>
<td>Sandstone, mudstone & thin limestone</td>
<td>Dinantian (early) Sandstones, Shales and Limestones</td>
</tr>
<tr>
<td>Ballymartin Formation (BT)</td>
<td>Limestone & dark-grey calcareous shale</td>
<td>Dinantian Lower Impure Limestones</td>
</tr>
<tr>
<td>Ballynash Member (BAnn)</td>
<td>Wavy-bedded cherty limestone, thin shale</td>
<td>Dinantian Lower Impure Limestones</td>
</tr>
<tr>
<td>Ballysteen Formation (BA)</td>
<td>Fossiliferous dark-grey muddy limestone</td>
<td>Dinantian Lower Impure Limestones</td>
</tr>
<tr>
<td>Ballycar Formation (BC)</td>
<td>Dark grey fine cherty limestone</td>
<td>Dinantian Pure Bedded Limestones</td>
</tr>
<tr>
<td>Cregmahon Member (TUcm)</td>
<td>Crinoidal limestone with cherts</td>
<td>Dinantian Pure Bedded Limestones</td>
</tr>
<tr>
<td>Waulsortian Limestones (WA)</td>
<td>Massive unbedded lime-mudstone</td>
<td>Dinantian Pure Unbedded Limestones</td>
</tr>
<tr>
<td>Finlough Formation (FL)</td>
<td>Dark grey shaly & cherty fine limestone</td>
<td>Dinantian Upper Impure Limestones</td>
</tr>
<tr>
<td>Ballymalone Formation (BO)</td>
<td>Black graptolitic shale & chert</td>
<td>Ordovician Metasediments</td>
</tr>
<tr>
<td>Purple grit (pg)</td>
<td></td>
<td>Ordovician Metasediments</td>
</tr>
<tr>
<td>Caher Hill Formation (CH)</td>
<td>Tuff, lavas and clastic sediments</td>
<td>Ordovician Volcanics</td>
</tr>
<tr>
<td>Broadford Formation (BF)</td>
<td>Fine to conglomeratic graded greywacke</td>
<td>Silurian Metasediments and Volcanics</td>
</tr>
<tr>
<td>Broadford Formation & Greywacke sandstone (gwBF)</td>
<td>Fine to conglomeratic graded greywacke</td>
<td>Silurian Metasediments and Volcanics</td>
</tr>
<tr>
<td>Cornagine Formation (CE)</td>
<td>Green, mottled siltstone & mudstone</td>
<td>Silurian Metasediments and Volcanics</td>
</tr>
<tr>
<td>Cratloe Formation (CR)</td>
<td>Laminated siltstone & sandstone</td>
<td>Silurian Metasediments and Volcanics</td>
</tr>
<tr>
<td>Derryfadda Formation (DF)</td>
<td>Greywackes, siltstone and mudstone</td>
<td>Silurian Metasediments and Volcanics</td>
</tr>
<tr>
<td>Glennagross Member (CRgc)</td>
<td>Conglomeratic sandstone</td>
<td>Silurian Metasediments and Volcanics</td>
</tr>
<tr>
<td>Greywacke sandstone (gw)</td>
<td>Greywacke, siltstone & shale</td>
<td>Silurian Metasediments and Volcanics</td>
</tr>
<tr>
<td>Kilanena Formation (KA)</td>
<td></td>
<td>Silurian Metasediments and Volcanics</td>
</tr>
<tr>
<td>Slieve Bernagh Form & Conglom & coarse greywacke (cgSB)</td>
<td>Fine & some coarser greywacke</td>
<td>Silurian Metasediments and Volcanics</td>
</tr>
<tr>
<td>Slieve Bernagh Formation (SB)</td>
<td>Fine & some coarser greywacke</td>
<td>Silurian Metasediments and Volcanics</td>
</tr>
<tr>
<td>Slieve Bernagh Formation & conglomerate & coarse greywa (cgSB)</td>
<td>Fine & some coarser greywacke</td>
<td>Silurian Metasediments and Volcanics</td>
</tr>
</tbody>
</table>