Oughterard Marbles GWB: Summary of Initial Characterisation.

<table>
<thead>
<tr>
<th>Hydrometric Area Local Authority</th>
<th>Associated surface water features</th>
<th>Associated terrestrial ecosystem(s)</th>
<th>Area (km²)</th>
</tr>
</thead>
</table>

**Topography**

This GWB occupies a low lying area between Maam Cross and Oughterard. Due to proximity and similarity there are small areas outside the main body that are included in this GWB. Elevations range from 30-260 m AOD. The Recess Marbles GWB is adjacent. Precambrian quartzites, gneisses and schists (Maam-Clonbur GWB) form the boundaries to the north and south. Surface water catchment divides bound the GWB to the west. Rivers and streams flow into the GWB from the north and south, then flow along the GWB in an easterly direction toward L. Corrib. Figure 1 shows the location and boundaries of the GWB.

**Aquifer categories**

This is an independent GWB because it comprises Precambrian Marbles, which are hydrochemically different from the Precambrian quartzites, gneisses and schists.

**Main aquifer lithologies**

The GWB is composed of Precambrian Marbles (Lakes Marbles Formation).

**Key structures**

The key structural trend is NW-SE, parallel to the northern and southern boundaries of the GWB. Faults trending NE-SW cross the GWB, every 100-1500 m. Bedding and foliation dip steeply to the south. Part of the GWB located over the main central area of the GWB is crossed by several E-W trending faults.

**Key properties**

There are no data available for this GWB. One ‘Poor’ yielding well (yield of 22 m³/d), with a productivity index of V and a specific capacity of approximately 2 m³/d/m is present in the Clifden Marbles GWB. The data indicate low transmissivity. Precambrian Marbles in other parts of the country have variable transmissivities but in general are expected to be low. Transmissivity may be higher in the vicinity of fault zones. Storativity is expected to be low (~0.5%). The data are inadequate to calculate groundwater gradients, however, these are expected to be greater than 0.01. Karstification is reported in some marble units in Donegal, and it is possible that similar rocks in this GWB may be susceptible to this process.

**Thickness**

Most groundwater flux is likely to be in the uppermost part of the aquifer; comprising a broken and weathered zone typically less than 3 m thick; a zone of interconnected fissuring 10-15 m thick; and a zone of isolated poorly connected fissuring typically less than 150 m.

**Geology and Aquifers**

**Lithologies**

The subsoils are dominated by blanket peat.

**Thickness**

The thickness of the blanket peat ranges from 0-6 m, depending on topography (Daly, 1985).

**% area aquifer near surface**

[Further Information to be added at a later date]

**Vulnerability**

[Further Information to be added at a later date]

**Recharge**

**Main recharge mechanisms**

Diffuse recharge occurs via rainfall percolating through the subsoil and rock outcrops. Due to the low permeability of some subsoil deposits and the aquifers, a high proportion of the effective rainfall will quickly discharge to the streams. The stream density is relatively high, reflecting the high proportion of surface runoff.

**Est. recharge rates**

[Information will be added at a later date]

**Discharge**

**Large springs and high yielding wells (m³/d)**

Sources: None identified.
Excellent Wells: None identified.
Good Wells: None identified.
Springs: None identified.

**Main discharge mechanisms**

Shallow groundwater is likely to discharge to streams and lakes, but the limited bedrock transmissivity means that the baseflow component of the total streamflow will be low. Small springs and seeps are likely to issue at the stream heads and along their course.

**Hydrochemical Signature**

No available data within this particular GWB.

**National classification:** Precambrian Marbles
Calcareous. Generally CaHCO₃ signature.

Alkalinity (mg/l as CaCO₃): range of 112-428; mean of 274 (22 data points)
Total Hardness (mg/l): range of 180-436; mean of 311 (22 data points)
Conductivity (µS/cm): range of 414-814; mean of 667 (22 data points)
In the absence of inter-granular permeability, groundwater flow is expected to be concentrated in upper fractured and weathered zones and in the vicinity of fault zones, which may have some degree of karstification. Flow paths are likely to be up to 150 m with groundwater discharging rapidly to nearby streams and small springs. Flow directions are expected to be in general to the east, toward L. Corrib.

Groundwater will discharge locally to streams and rivers crossing the aquifer and also to small springs and seeps. Owing to the poor productivity of the aquifers in this body it is unlikely that any major groundwater-surface water interactions occur. Baseflow to rivers and streams is likely to be relatively low.

This GWB occupies a low lying area between Maam Cross and Oughterard. Elevations range from 30-260 mAOD.

The GWB is composed primarily of low transmissivity rocks, although there may be more productive zones in the vicinity of faults. Most of the groundwater flux is likely to be in the uppermost part of the aquifer.

Recharge occurs diffusely through the subsoil and rock outcrops, although it is limited by low permeability subsoil and bedrock. Therefore, most of the effective rainfall is not expected to recharge the aquifer.

Flow paths are likely to be up to 150 m with groundwater discharging rapidly to the streams crossing the aquifer, and to small springs and seeps. Overall, the flow directions are expected to be to the east, as determined by the topography.


Figure 1 Location and boundaries of GWB