Moynalvy GWB: Summary of Initial Characterisation

<table>
<thead>
<tr>
<th>Hydrometric Area</th>
<th>Associated surface water bodies</th>
<th>Associated terrestrial ecosystems</th>
<th>Area (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meath Co. Co. Hydrometric Area 07</td>
<td>Boycetown, Knightsbrook, Skane.</td>
<td>None</td>
<td>49</td>
</tr>
</tbody>
</table>

Topography
This GWB is located in southern Meath between Summerhill and Dunshaughlin. The area lies on the northern side of the boundary between the Boyne and Liffey catchments. The elevations are highest to the southeast, along the catchment boundary and then drop off towards the northwest. Elevations range from 140 m OD along the catchment boundary to 70 m OD.

Aquifer type(s)
- **Li:** Locally important aquifer, moderately productive only in local zones
- **UN:** Undifferentiated Namurian Rock (NAM) Shale & Sandstone.

Key structures
- **At the end of the Carboniferous Period,** the Variscan Orogeny uplifted and folded the Namurian rocks into a series of broad shallow folds, which are also cut by faults. The deformation front was located in the south of the country, meaning that its effects are seen most strongly in the south-west, diminishing further north. Faulting in the Namurian appears to be less common than in the underlying rocks, faults are likely to have become infilled by weathered shale.

Key properties
There is no data present on the aquifer properties of this GWB. Transmissivity and storativity are expected to be low but enhanced in local zones.

Thickness
The depth to which open fissures are encountered below ground will determine the depth of significant groundwater flow in the aquifer since it is not considered that the rock has any primary porosity. In such low permeability rocks it is considered that the majority of groundwater flow will occur in the upper 3m and groundwater flow in fissures does not typically occur below 10m.

Lithologies
The dominant subsoil lithology overlying this GWB is till. There are smaller areas of alluvium and gravel deposits in places. The till is mainly derived from Namurian sediments although some limestone tills are seen closer to the contact with the limestone.

Thickness
Subsoil thickness increases from the areas of outcrop along the eastern boundary to thicker deposits in the west.

% Area aquifer near surface
Thin subsoils are present at the tops of the hills along the eastern and northeastern boundary of the body.

Vulnerability
The vulnerability is mostly Moderate with some areas of Extreme in the hilly areas.

Recharge
- **Diffuse recharge** will occur via rainfall percolating through the subsoil. The proportion of the effective rainfall that recharges the aquifer is largely determined by the thickness and permeability of the soil and subsoil, and by the slope. Due to the generally low permeability of the aquifers within this GWB, a high proportion of the recharge will then discharge rapidly to surface watercourses via the upper layers of the aquifer, effectively reducing further the available groundwater resource in the aquifer.

Est. recharge rates
[Information to be added at a later date]

Discharge
- **EPA – Groundwater Abstraction Register - St. John’s Well (Warrenstown, Spring), Warrenstown Agricultural College (31 m³/d)**

Main discharge mechanisms
Groundwater will discharge from this GWB to the streams overlying the aquifer where the rock is in hydraulic continuity with the riverbed. This discharge is the baseflow flow of the rivers, which supports summer flows. Dry Weather Flows suggest the summer baseflow is quite low and therefore it is likely that discharge from this aquifer will be peaky and the majority of flow to the river will occur shortly after a rainfall event. Groundwater may also discharge from this aquifer along the geological contact with the limestone, which forms the boundary of the body.

Hydrochemical Signature
There is no hydrochemical data available for this GWB at this time or for any Namurian aquifers in the E RBD. The groundwater is expected to be soft to moderately hard with a calcium bicarbonate signature.

Groundwater Flow Paths
In general, groundwater movement in these rock units is expected to occur relatively rapidly and at shallow depths. The rock unit’s permeability depends on the presence of faults and joints along which groundwater can flow. In the shaly portions of the unit, movement of water along faults and joints is likely to be impeded by clay which is sometimes found to fill the openings. The more productive portions of the unit are likely to be the thicker beds of sandstone, where brittle fracturing is likely to have occurred, and where groundwater flow is likely to be better developed. The flow is generally in localised systems with little continuity between them. Examination of data in the GSI well database shows that water levels in these Namurian rocks are shallow, usually less than 10 m below surface, although deeper levels are encountered which may be a reflection of the higher topography. Local groundwater flow directions will be dictated by local topographic, and hence hydraulic, gradients, which will converge at rivers. On a more regional scale groundwater flow from these Namurian mounds is radial, down towards the limestone.

Groundwater & surface water interactions
Typically, swallow holes and collapse features are located at the boundary between Namurian and Limestone Rocks. This is due to the acidic waters from the Namurian flowing on to the pure limestones and causing increased dissolution over a small area. Such features are of great importance to the surface water and groundwater interactions of the adjacent water body. Special care must be taken in consideration of the pressures on the adjacent limestone GWB because of the ability of surface pollutants in rivers from the Namurian to pass directly into the groundwater of the limestone with out any attenuation in the unsaturated zone.
This GWB is located in southern Meath between Summerhill and Dunshaughlin. This is a moderately hilly area with elevations ranging from 140 m OD along the catchment boundary to 70 m OD. The extent of the body is defined to the south and east by the river catchment boundary between the Liffey and the Boyne Rivers, and elsewhere by the extent of the Namurian rock in this area. The GWB is composed primarily of low permeability rocks, although localized zones of enhanced permeability do occur. Recharge occurs diffusely through the subsoils and via outcrops. It takes place mainly in the upland areas where subsoils are thinner and more permeable. The aquifers within the GWB are generally unconfined, but may be locally confined where the subsoil is thicker and/or less permeable. Most flow in this aquifer will occur near the surface. In general, the majority of groundwater flow occurs in the upper 10 m, comprising a weathered zone of a few metres and a connected fractured zone below this. However, deep-water strikes in more isolated faults/fractures can be encountered at 30-50 mbgl. Flow path lengths are relatively short, and in general are between 100 and 500 m. Groundwater discharges to the numerous small streams crossing the aquifer, and to the springs and seeps.

Attachments

Instrumentation

- Stream gauge: 07024,
- Borehole Hydrograph: None
- EPA Representative Monitoring boreholes: None

Information Sources

Disclaimer

Note that all calculation and interpretations presented in this report represent estimations based on the information sources described above and established hydrogeological formulae.

Table: Formation Names and Descriptions

<table>
<thead>
<tr>
<th>Formation Name</th>
<th>Code</th>
<th>Description</th>
<th>Rock Unit Group</th>
<th>Aquifer Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Namurian (undifferentiated)</td>
<td>NAM</td>
<td>Shale & sandstone</td>
<td>Namurian Undifferentiated</td>
<td>Pl</td>
</tr>
</tbody>
</table>