Maamturks WEST Marbles GWB: Summary of Initial Characterisation.

<table>
<thead>
<tr>
<th>Hydrometric Area</th>
<th>Associated surface water features</th>
<th>Associated terrestrial ecosystem(s)</th>
<th>Area (km²)</th>
</tr>
</thead>
</table>

Hydrometric Area 31 Galway Co. Co.

This GWB occupies an area north of Recess, occupying a N-S trending valley between the Maamturks and the Twelve Pins. The land surface is characterised by a low-lying area, with elevations ranging from 20-70 m AOD. Precambrian quartzites, gneisses and schists form the boundary to the south. Surface water catchment divides bound the GWB to the north, east and west. The main drainage pattern is toward L. Inagh. Figure 1 shows the location and boundaries of the GWB.

Topography

Geology and Aquifers

- **Aquifer categories**
 - This is an independent GWB because it comprises Precambrian Marbles, which are hydrochemically different from the Precambrian quartzites, gneisses and schists.
 - PI: Poor aquifer which is generally unproductive except for local zones.

- **Main aquifer lithologies**
 - The GWB is composed of Precambrian Marbles (Lakes Marbles Formation).

- **Key structures**
 - The key structural trend is NW-SE, with N-S and NE-SW trending fault sets.

- **Key properties**
 - There are no data available for this GWB. One ‘Poor’ yielding well (yield of 22 m³/d), with a productivity index of V and a specific capacity of approximately 2 m³/d/m is present in the Clifden Marbles GWB. The data indicate low transmissivity. Precambrian Marbles in other parts of the country have variable transmissivities but in general are expected to be low. Transmissivity may be higher in the vicinity of fault zones. Storativity is expected to be low (<0.5%). The data are inadequate to calculate groundwater gradients, however, these are expected to be greater than 0.01. Karstification is reported in some marble units in Donegal, and it is possible that the marble units in this GWB may be susceptible.

- **Thickness**
 - Most groundwater flux is expected to be in the uppermost part of the aquifer; comprising a broken and weathered zone typically less than 3 m thick; a zone of interconnected fissuring 10-15 m thick; and a zone of isolated poorly connected fissuring typically less than 150 m.

Lithologies

- The subsoils are dominated by blanket peat.

Thickness

- The thickness of the blanket peat ranges from 0-6 m, depending on topography (Daly, 1985).

Overlying Strata Vulnerability

- [Further Information to be added at a later date]

Main recharge mechanisms

- Diffuse recharge occurs via rainfall percolating through the subsoil and rock outcrops. Due to the low permeability of some subsoil deposits and the aquifers, a high proportion of the effective rainfall will quickly discharge to the streams. The stream density is relatively high, reflecting the high proportion of surface runoff.

Est. recharge rates

- [Information will be added at a later date]

Large springs and high yielding wells (m³/d)

- Sources: None identified.
 - Excellent Wells: None identified.
 - Good Wells: None identified.
 - Springs: None identified.

Main discharge mechanisms

- Shallow groundwater is likely to discharge to streams and lakes, but the limited bedrock transmissivity means that the baseflow component of the total streamflow will be low. Small springs and seeps are likely to issue at the stream heads and along their course.

Discharge

Hydrochemical Signature

- National classification: Precambrian Marbles
 - Calcareous. Generally CaHCO₃ signature.
 - Alkalinity (mg/l as CaCO₃): range of 112-428; mean of 274 (22 data points)
 - Total Hardness (mg/l): range of 180-436; mean of 311 (22 data points)
 - Conductivity (µS/cm): range of 414-814; mean of 667 (22 data points)

Groundwater Flow Paths

- In the absence of inter-granular permeability, groundwater flow is expected to be concentrated in upper fractured and weathered zones and in the vicinity of fault zones, which may have some degree of karstification. Flow paths are likely to be up to 150 m with groundwater discharging rapidly to nearby streams and small springs. Flow directions are expected to be in general to the south, toward L. Inagh.
Groundwater & Surface water interactions

Groundwater will discharge locally to streams and rivers crossing the aquifer and also to small springs and seeps. Owing to the poor productivity of the aquifers in this body it is unlikely that any major groundwater-surface water interactions occur. Basflow to rivers and streams is likely to be relatively low.

Conceptual model

- This GWB occupies an area north of Recess, occupying a N-S trending valley between the Maamturks and the Twelve Pins. The land surface is characterised by a low-lying area, with elevations ranging from 20-70 m AOD.
- Precambrian quartzites, gneisses and schists bound the GWB to the south. Surface water catchment divides bound the GWB to the north, east and west. The main drainage pattern is toward L. Inagh.
- The GWB is composed primarily of low transmissivity rocks, although there may be more productive zones in the vicinity of faults. Most of the groundwater flux is likely to be in the uppermost part of the aquifer.
- Recharge occurs diffusely through the subsoil and rock outcrops, although is limited by low permeability subsoil and bedrock. Therefore, most of the effective rainfall is not expected to recharge the aquifer.
- Flow paths are likely to be up to 150 m with groundwater discharging rapidly to the streams crossing the aquifer, and to small springs and seeps. Overall, the flow directions are expected to be to the south.
- The rock units in GWB are generally of low permeability and baseflow to rivers and streams is likely to be relatively low.

Attachments

Figure 1. Location and boundaries of GWB

Information Sources

Disclaimer

Note that all calculation and interpretations presented in this report represent estimations based on the information sources described above and established hydrogeological formulae.