Lavagh-Ballygawley GWB: Summary of Initial Characterisation.

<table>
<thead>
<tr>
<th>Hydrometric Area</th>
<th>Associated surface water features</th>
<th>Associated terrestrial ecosystem(s)</th>
<th>Area (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Authority</td>
<td>Rivers: Ballysadare, Owenmore, Unshin.</td>
<td>Unshin River (001889), Knockmullen Fen (001904), Fin and Riskeen Loughs (001907) (O’Riain, 2004).</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Streams: Killoran Lough Stream.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lakes: Killoran South, Carton, Fin, Riskeen, Killoran North, Drumdivnagh, Knockroe, Toberscanavan, Cloghfin.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Topography

The GWB occupies a relatively narrow rectangular area orientated NE-SW, between Lavagh and and Ballintogher. The location and boundaries are given in Figure 1. The land surface is characterised by undulating terrain toward the western side and a drumlinised landscape on the eastern side. Elevations range from 30-190 m AOD, sloping in an northeasterly direction. It is bounded to the north and south by the Dinantian Pure Bedded Limestones of the Ballygawley and the Ballymote GWB’s. The eastern and western boundaries are surface water divides.

Aquifer Categories

- **L1**: Locally important aquifer, moderately productive only in local zones.

Main Aquifer Lithologies

The Lisgorman Shales are the only rock unit present (Dinantian Shales and Limestones).

Key Structures

The key structural trend is SW-NE, parallel to the northern and southern boundaries, with the beds striking NE-SW and dipping 2-5° to the SE.

Key Properties

There are no data specific to the GWB, thus information from the Kilkelly GWB is used. Transmissivity is expected to be low across the entire GWB, however, in the vicinity of faults, transmissivity may be higher. Storativity is expected to be low (<0.5%). The data are inadequate to calculate groundwater gradients, these are expected to be greater than 0.005.

Thickness

Most groundwater flux is likely to be in the uppermost part of the aquifer; comprising a broken and weathered zone typically less than 3 m thick; a zone of interconnected fissuring 10-15 m thick; and a zone of isolated poorly connected fissuring typically less than 150 m.

Lithologies

Till is the dominant subsoil type.

Overlying Strata

There are no depth to bedrock data available.

% Area Aquifer near Surface

[Information to be added at a later date]

Vulnerability

[Information to be added at a later date]

Main Recharge Mechanisms

Diffuse recharge occurs via rainfall percolating through the subsoil and rock outcrops. Due to the low permeability of much of the subsoil (blanket peat) and the aquifers, a high proportion of the available recharge will discharge to the streams.

Ext. Recharge Rates

[Information to be added at a later date]

Discharge

No large springs or good wells identified.

Main Discharge Mechanisms

The main groundwater discharges are to the streams, rivers and lakes. Small springs and seeps are likely to issue at the stream heads and along their course. The generally poor aquifer properties indicate that the baseflow component of total streamflow is likely to be low.

Hydrochemical Signature

There are no data but generally is expected to have a CaHCO₃ signature.

Groundwater Flow Paths

Groundwater flow is expected to be concentrated in fractured and weathered zones and in the vicinity of fault zones. Flow paths are likely to be up to 300 m, with groundwater discharging rapidly to nearby streams and small springs. Groundwater flow directions are expected to follow topography.
Groundwater & Surface water interactions

Groundwater will discharge locally to streams and rivers crossing the aquifer and also to small springs and seeps. Owing to the poor productivity of the aquifers in this body it is unlikely that any major groundwater-surface water interactions occur. Baseflow to rivers and streams is likely to be relatively low.

Conceptual model

- The GWB occupies a relatively narrow rectangular area orientated NE-SW, between Lavagh and Ballintogher. The land surface is characterised by the undulating terrain toward the western side and a drumlinised landscape on the eastern side. Elevations range from 30-190 m AOD, sloping in an northeasterly direction.
- It is bounded to the north and south by the Dinantian Pure Bedded Limestones of the Balleygawley and the Ballymote GWB’s. The eastern and western boundaries are surface water divides.
- The GWB is composed primarily of low transmissivity rocks. Most of the groundwater flux is likely to be in the uppermost part of the aquifer: comprising a broken and weathered zone typically less than 3m thick; a zone of interconnected fissuring 10-15m; and a zone of isolated, poorly connected fissuring typically less than 150m.
- Storativity is expected to be low (<0.5%). The data are inadequate to calculate groundwater gradients, however, these are generally expected to be greater than 0.005.
- Recharge occurs diffusely through the subsoils and rock outcrops. Recharge is limited by the low permeability bedrock, thus most of the available recharge discharges rapidly to nearby streams and small springs.
- Groundwater flow is expected to be concentrated in fractured and weathered zones and in the vicinity of fault zones. Flow paths are likely to be up to 300 m, with groundwater discharging rapidly to nearby streams and small springs.
- The rock units in GWB are generally of low permeability and baseflow to rivers and streams is likely to be relatively low.

Attachments

Figure 1.

Instrumentation

Stream gauges: 35001, 35026.
EPA Water Level Monitoring boreholes: None
EPA Representative Monitoring points: None

Information Sources

Disclaimer

Note that all calculation and interpretations presented in this report represent estimations based on the information sources described above and established hydrogeological formulae.

Figure 1. Location and Boundaries of GWB